6 research outputs found

    Multiple mechanisms contribute to lateral transfer of an organophosphate degradation (opd) island in Sphingobium fuliginis ATCC 27551

    Get PDF
    The complete sequence of pPDL2 (37,317 bp), an indigenous plasmid of Sphingobium fuliginis ATCC 27551 that encodes genes for organophosphate degradation (opd), revealed the existence of a site-specific integrase (int) gene with an attachment site attP, typically seen in Integrative Mobilizable Elements (IME). In agreement with this sequence information, site-specific recombination was observed between pPDL2 and an artificial plasmid having a temperature-sensitive replicon and a cloned attB site at the 3′ end of the seryl tRNA gene of Sphingobium japonicum. The opd gene cluster on pPDL2 was found to be part of an active catabolic transposon with mobile elements y4qE and Tn3 at its flanking ends. Besides the previously reported opd cluster, this transposon contains genes coding for protocatechuate dioxygenase and for two transport proteins from the major facilitator family that are predicted to be involved in transport and metabolism of aromatic compounds. A pPDL2 derivative, pPDL2-K, was horizontally transferred into Escherichia coli and Acinetobacter strains, suggesting that the oriT identified in pPDL2 is functional. A well-defined replicative origin (oriV), repA was identified along with a plasmid addiction module relB/relE that would support stable maintenance of pPDL2 in Sphingobium fuliginis ATCC 27551. However, if pPDL2 is laterally transferred into hosts that do not support its replication, the opd cluster appears to integrate into the host chromosome, either through transposition or through site-specific integration. The data presented in this study help to explain the existence of identical opd genes among soil bacteria

    Enzymatic Depilation of Animal Hide: Identification of Elastase (LasB) from Pseudomonas aeruginosa MCM B-327 as a Depilating Protease

    Get PDF
    Conventional leather processing involving depilation of animal hide by lime and sulphide treatment generates considerable amounts of chemical waste causing severe environmental pollution. Enzymatic depilation is an environmentally friendly process and has been considered to be a viable alternative to the chemical depilation process. We isolated an extracellular protease from Pseudomonas aeruginosa strain MCM B-327 with high depilation activity using buffalo hide as a substrate. This 33 kDa protease generated a peptide mass fingerprint and de novo sequence that matched perfectly with LasB (elastase), of Pseudomonas aeruginosa. In support of this data a lasB mutant of MCM B-327 strain lacked depilatory activity and failed to produce LasB. LasB heterologously over-produced and purified from Escherichia coli also exhibited high depilating activity. Moreover, reintroduction of the lasB gene to the P. aeruginosa lasB mutant via a knock-in strategy also successfully restored depilation activity thus confirming the role of LasB as the depilating enzyme

    Purification and characterization of catechol 1,2-Dioxygenase from Acinetobacter sp. DS002 and cloning, sequencing of partial catA gene

    No full text
    Catechol 1,2-dioxygenase (C12O) was purified to electrophoretic homogeneity from Acinetobacter sp. DS002. The pure enzyme appears to be a homodimer with a molecular mass of 66 kDa. The apparent Km and Vmax for intradiol cleavage of catechol were 1.58 μM and 2 units per mg of protein respectively. Unlike other C12Os reported in the literature, the catechol 1,2-dioxygenase of Acinetobacter showed neither intradiol nor extradiol cleavage activity when substituted catechols were used as substrates. However, it has shown mild intradiol cleavage activity when benzenetriol was used as substrate. As determined by two dimensional electrophoresis (2DE) followed MALDI-TOF/TOF analyses and gel permeation chromatography, no isoforms of C12O was observed in Acinetobacter sp. DS002. Further, the C12O was seen only in cultures grown in benzoate and it was completely absent in succinate grown cultures. Based on the sequence information obtained from MS/MS data, degenerate primers were designed to amplify catA gene from the genomic DNA of Acinetobacter sp. DS002. The sequence of the PCR amplicon and deduced amino acid sequence showed 97% similarity with a catA gene of Acinetobacter baumannii AYE (YP_001713609)

    Indigenous organophosphate-degrading (opd) plasmid pCMS1 of Brevundimonas diminuta is self-transmissible and plays a key role in horizontal mobility of the opd gene

    No full text
    A fosmid library of the 66 kb indigenous organophosphate-degrading (opd) plasmid pCMS1 of Brevundimonas diminuta was tagged with mini-transposon EZTn5 <R6Kγori/KAN-2>, to determine its sequence using transposon-specific primers. The sequence revealed the presence of a number of tra genes suggesting their role in conjugal transfer of pCMS1. Consistent with the presence of the tra genes, the B. diminuta plasmid, pCMS1::tet, generated by replacing the opd gene with opd::tet, served as a donor for transferring pCMS1::tet into recipient strain Pseudomonas putida. The self-transmissibility of the opd-containing plasmid pCMS1 and the existence of identical opd genes on otherwise dissimilar plasmids suggests a probable role of indigenous opd plasmids like pCMS1 in transferring the opd gene among soil bacteria

    The Organophosphate degradation (opd) island-borne esterase-induced metabolic diversion in Escherichia coli and its influence on p-nitrophenol degradation

    Get PDF
    In previous studies of the organophosphate degradation gene cluster we showed that expression of an open reading frame (orf306) present within the cluster in E. coli allowed growth on p-nitrophenol (PNP) as sole carbon source. We have now shown that expression of orf306 in E. coli causes a dramatic up-regulation in genes coding for alternative carbon catabolism. The propionate, glyoxylate and Methyl Citrate Cycle (MCC) pathway-specific enzymes are up regulated, along with hca (phenyl propionate) and mhp (hydroxy phenyl propionate) degradation operons. These hca and mhp operons play a key role in degradation of PNP, enabling E. coli to grow using it as sole carbon source. Supporting growth experiments, PNP degradation products entered central metabolic pathways and got incorporated into the carbon backbone. The protein and RNA samples isolated from E. coli (pSDP10) cells grown in C14 labelled PNP indicated incorporation of C14 carbon suggesting Orf306-dependent assimilation of PNP in E. coli cells
    corecore